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Introduction 
 

 There has been significant research in the past for transdermal drug delivery via 

electroporation; however, there has been very little success with breaking the surface of the skin 

and injecting medicinal nanoparticles. The purpose of this research is to model the electric field 

in the layers of skin to examine its behavior, discover the transient behavior of the surface charge 

density on the boundaries between the different layers of skin, and to determine the appropriate 

time scale in which it takes the system takes to reach its steady state condition. 

Electroporation is the biological process by which pores are formed on the top layers of 

skin. When an electric field interacts with the skin it is hypothesized that the skin will undergo 

this process if the field has a minimum strength of 400 V/cm. One leading theory for this process 

is that the skin porates near the hair follicles, and the skin will form various charge densities for 

the nanoparticles to be injected. However, it is left to much debate about what exactly occurs at 

the microscopic level that creates the pores in the skin. Based on prior research, there are three 

key factors that cause electroporation: there has to be an electric field tangential to the boundary 

of the skin, the magnitude of the field has to be stronger than 400 V/cm, and the lower layers of 

the skin should not be affected strongly by the electric field. To create the electric field, an 

electrode with a specific contour shape will be applied to the surface of the first layer of the skin. 

 Several computer software packages were evaluated for their usefulness in achieving 

accurate models of the fields induced into the layers of skin. The first of which is a simulation 

package called PSpice, which could be useful with modeling the one-dimensional electric field. 

More specifically, the famous electromagnetism problem, Maxwell’s Capacitor, could be 

accurately modeled and reproduced in the PSpice environment. The second software package 

that was evaluated for the model was MATLAB. This software is versatile and not made 
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specifically for electromagnetism research, however, with proper knowledge and expertise it is 

possible to write robust, customizable, specific, and expandable software. It was decided that 

MATLAB would be the software package that will be used to develop the proper simulations for 

the electric field problem. 

A very brief discussion about the capabilities of MATLAB with electric field modeling 

will be discussed. MATLAB is a computer language and software package made specifically 

with engineering in mind. Control structures such as for loops can be used for summation and 

product notation, which will be beneficial for the calculation of the electric fields. MATLAB 

also contains various libraries for graphical user interfaces and figure windows, which can be 

used for displaying qualitative vector fields and quantitative plots. The written code for all of the 

models produced for this research can be found in the appendix of the report. 

A proper and robust numerical method for calculating potential and electric field had to 

be integrated into the model. A method known as the Charge Simulation Method (CSM) was 

chosen to accurately calculate electric fields from discrete points positioned along any contour 

shape. This numerical method, first presented by Singer, Steinberger, and Weiss in IEEE 

Transactions in Power Apparatus and Systems, replaces older techniques that require complex 

integration and solutions to Laplace’s equations (1660). This numerical technique is applicable 

to multidimensional structures in homogenous media (1660). With the benefits of elegance and 

simplicity of CSM, this technique was chosen as the basis for the research. A more in depth 

description will follow when the two-dimensional model is described. 

A brief discussion about boundary conditions will ensue. There are three key electric 

field boundary conditions that have been applied in the research to calculate electric fields across 
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dielectric boundaries. First, the potential as seen from both sides of the dielectric has to be 

continuous. The equation takes the form of the following in the two-dimensional case: 

𝜑! 𝑥, 0 = 𝜑! 𝑥, 0 ,        (1) 

where 𝜑! is the potential seen on the side of the first dielectric and 𝜑! is the potential seen on the 

side of the second dielectric. Secondly, the electric field parallel to the surface is continuous. The 

equation takes the form as the following: 

𝑛× 𝐸! − 𝐸! = 0,                (2) 

where 𝑛 is the orthogonal unit vector that describes the boundary, 𝐸! is the electric field on the 

side of the first dielectric at the boundary, and 𝐸! is the electric field on the side of the second 

dielectric at the boundary. The last boundary condition states that the difference between the 

electric fields multiplied by their corresponding permittivities is equal to the surface charge 

density. The equation takes the form as the following: 

𝑛 ∙ 𝜖!𝐸! − 𝜖!𝐸! = 𝜌!,                  (3)   

where 𝑛 is the orthogonal unit vector that describes the boundary, 𝐸! is the electric field on the 

side of the first dielectric at the boundary, 𝐸! is the electric field on the side of the second 

dielectric at the boundary, 𝜖! and 𝜖! are the corresponding permittivities, and 𝜌! is the charge 

density on the boundary. These comprise the three boundary conditions that exist for electric 

fields across a dielectric boundary. 

 The calculation of the electric field of n charges over a conducting plate or over a ground 

plane requires the use of image charge theory. With this theory, image charges are reflected over 

the boundary that is the conducting place or ground plane. The images charges have equal but 

opposite magnitude to the original charges. The electric field over the space is then calculated 

with both the original charges and image charges through superposition. This method works 
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because of the idea that the conducting plate cannot contain any internal electric field. So, this 

follows that the electric field has to be parallel to the orthogonal unit vector which defines the 

conducting plane, due to boundary condition (2) and (3). When the image charge is added to the 

model, the field in between the two charges is perfectly perpendicular to the conductive plate. 

The image charge theory is essential to the calculations done in the model.  

 

Methods of Investigation 

In this section, the theory behind each model will be explained in detail, so that the 

analysis could be reproduced or modified if need be. The code will be explained briefly, as there 

are comments that explain the functions if clarification is necessary. Before discussing the 

numerical processes involved with this research, an analytical approach to the problem will be 

explained. 

 

Maxwell’s Capacitor 

 

Figure 1. Maxwell’s Capacitor (Haus & Melcher) 
 

Maxwell’s Capacitor is a well-know electromagnetics problem involving two capacitors 

in series, and each capacitor is filled with a medium defined by both permittivity and 

conductivity. A brief derivation of the transient electric fields, 𝐸!  and 𝐸!, will be outlined below. 
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 Using Faraday’s Law, an equation was derived that relates the magnitudes of the field 

and the distances between the plates of the capacitor with the total voltage: 

𝐸!𝑑𝑥 = 𝑣 𝑡 = 𝑎𝐸! + 𝑏𝐸!                                        (4)
!

!!
 

Using (3) and ∇ ∙ 𝐽 = !"
!"

, the following equation was derived: 

𝜎!𝐸! − 𝜎!𝐸! =
𝑑
𝑑𝑡 𝑛 ∙ 𝜖!𝐸! − 𝜖!𝐸!                                   (5) 

When solving for 𝐸! in (4) and substituting the result into (5), the final differential equation was 

derived: 

𝑏𝜖! − 𝑎𝜖!
𝑑𝐸!
𝑑𝑡 + 𝑏𝜎! + 𝑎𝜎! 𝐸! = 𝜎!𝑣 𝑡 + 𝜖!

𝑑𝑣(𝑡)
𝑑𝑡                             (6) 

This differential equation can be solved, and solutions for 𝐸! and 𝐸! will be derived. But first an 

initial condition has to be determined. At the instant when a voltage is applied, t=0, the 

conductivity does not play a role on the electric field distribution. Thus, only permittivites will 

be accounted for. The initial condition is found below: 

𝐸! 0 =
𝜖!

𝑏𝜖! − 𝑎𝜖!
  𝑣 𝑡                             (7) 

The solutions can now be found. The forced solution to the differential equation is as follows, 

𝐸!" 𝑡 =
𝜎!

𝑏𝜎! + 𝑎𝜎!
  𝑣 𝑡   ,                          (8) 

and the natural solution is: 

𝐸!" 𝑡 = 𝐾𝑒!!/!,                        (9)       

where 

𝜏 =
𝑏𝜖! − 𝑎𝜖!
𝑏𝜎! + 𝑎𝜎!

.                  (10) 
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Adding the natural and forced solutions together and solving for constant, K, based on the initial 

condition gives a final equation for 𝐸! and 𝐸! using (4): 

𝐸! 𝑡 =
𝜎!

𝑏𝜎! + 𝑎𝜎!
  𝑣 𝑡      1− 𝑒!

!
! +     

𝜖!
𝑏𝜖! − 𝑎𝜖!

𝑣 𝑡   𝑒!
!
!              (11)             

𝐸! 𝑡 =
𝑣(𝑡)
𝑏 −

𝜎!
𝑏𝜎! + 𝑎𝜎!

  𝑣 𝑡      1− 𝑒!
!
! +     

𝜖!
𝑏𝜖! − 𝑎𝜖!

𝑣 𝑡   𝑒!
!
!    

𝑎
𝑏             (12) 

These equations were then implemented into MATLAB, and plotted for various parameters. It is 

also significant to remember that this can be simply modeled with a resistor in parallel with a 

capacitor in series with another resistor in parallel with a capacitor. Figure 2 shows the output 

with the parameters of 𝜎! > 𝜎! and 𝜖! > 𝜖!. 

 

Figure 2. Analytical solution for Maxwell’s Capacitor problem. 

One Dimensional Modeling 

 The second phase of the process was to solve the Maxwell’s Capacitor problem 

numerically using MATLAB. Also, instead of only solving for two capacitors, this model 

included three to represent the three different layers of skin. The purpose of this model was to 

produce accurate data for a one-dimensional electrode, and to show the transitory electric field 

and surface charge density evolution over several time constants.  
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 To begin, a system of equations was formed to solve for the electric field in each 

capacitor. The system is shown below: 

𝐸!𝑑! + 𝐸!𝑑! + 𝐸!𝑑! = 𝑣 𝑡                       (13) 

−𝜖!𝐸! + 𝜖!𝐸! = 𝜌!!                            (14) 

−𝜖!𝐸! + 𝜖!𝐸! = 𝜌!!                            (15) 

This system employs the boundary conditions and the simple consequence of Faraday’s Law as 

shown above. The base case can be calculated knowing that 𝜌!! = 𝜌!! = 0, but because the 

transient charge density is not known. Notice that only the base case can be calculated without 

employing numerical methods because the charge density over time is not known yet. 

Specifically, Newton’s method has to be used over several time constants to determine the nature 

of the charge density. 

 Newton’s method is a numerical technique used to approximate a differential equation, 

and this is key to solving for the surface charge on the boundary between the two layers of skin. 

Kirchoff’s current law in the circuit sense, states that ∇ ∙ 𝐽 = 0, meaning the current density 

entering a node is equal the current density leaving the same node. While this approximation 

holds true in numerous circuits, it does not hold true in this problem. The divergence of the 

current density is equal to the rate of change for the surface charge density, or ∇ ∙ 𝐽 = !"
!"

. With 

Newton’s method, it is possible to approximate the charge density over time. Newton’s method 

takes the form of the following: 

𝜌! 𝑡!"#$ = 𝜌! 𝑡!"# +
𝑑𝜌!
𝑑𝑥   ∆𝑡   → 𝜌!! 𝑡!"#$ = 𝜌!! 𝑡!"# + 𝜎!𝐸! − 𝜎!𝐸!   ∆𝑡                      (16) 

A similar equation can be derived for 𝜌!!. To properly define this series, a base case is needed. 

At t=0, there is no surface charge density on the boundary. As time progresses, !!!
!"

→ 0 and the 
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charge on the boundary of the surface becomes constant. By using this method it is possible to 

solve the system shown by (13-15) at discrete time intervals. It is essential that   ∆𝑡 → 0, for the 

method to be as accurate as possible. 

 The time constants for the system have to be calculated, which is simply 𝜖/𝜎. In this 

model, the time increments by the smallest time constant divided by 100, and the method is 

repeated until the time reaches 5 times the largest time constant. At 5 time constants, the electric 

field and surface charge density will reach its steady state form, and the data can then be 

analyzed properly. A simple graphical user interface was created so that the user could alter the 

permittivities and conductivities of the skin layers. The figure window is shown below, and the 

MATLAB code can be found in the appendix. 

 

Figure 3. Graphical user interface for numerical computation of Maxwell’s Capacitor with three 
layers. 

 
Inaccuracies of this model include the assumption that the bottom of the third layer of skin is 

grounded, and the plate is infinite in size in comparison to thickness of the skin layers. The 

limitations of the method are that only one-dimensional electrodes can be tested. In numerous 
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ways, this method will not be incredible useful for the research of stimulating the skin for 

electroporation. Also, it is important to note that the transient nature of the electric field and 

surface charge density occurs at the nanosecond timescale. This method was tested for d3=0um 

(the thickness of the third layer), and the results match those of the analytical solution. To 

improve on the inaccuracies and limitations, a second simulation was created. 

Two-Dimensional Model (no Conductivity) 

 This simulation produces a qualitative vector field based on a specific contour shape 

specified by the user. In this model, the top two layers of skin were modeled for simplicity and 

computational efficiency. In order to calculate the electric field due to the custom electrode 

shape a numerical method called the Charge Simulation Method had to be adopted. Because each 

layer has a different permittivity, another simulation technique using fictitious charges had to be 

integrated. CSM is first explained, and then the fictitious charge method. 

CSM begins with n discrete charges of which are aligned along a conductor’s contour. 

Each point then has a corresponding contour point, which are placed on the boundary between 

the conductor and the dielectric medium. The conductor is assumed to be perfect, and in this 

case, all of the charges, either positive or negative, exist on the surface. Also, there is also no 

electric field on the inside of a perfect conductor. The conductor is then charged to an arbitrary 

potential, and the following equation is formed. 

1
4𝜋𝜖 ∗ 𝑟!

∗  
!

!!!

𝑄! =   𝜑! ,                    (17) 

where rj is the distance from the contour point, Qj is the fictitious charge, and 𝜑! is the potential 

of the conductor. Since there are n contour points, and rj and 𝜑! are known, a system of 

equations can be formed and each charge can be solved directly with the equation below. 
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𝑃 ∗ 𝑄 = 𝜑   → 𝑄 = 𝑖𝑛𝑣 𝑃 ∗ 𝜑 ,                      (18) 

where [P] is the potential coefficient matrix, [Q] is the column vector of all the charges, and 𝜑    

is the column of the potentials which should be the same if the conductor is perfect and 

continuous. Once the charges are solved, the electric field associated with n point charges can be 

calculated. The formulas that are used for the x and y components of the electric field are as 

follows based solely on the contour charges: 

𝐸! =
𝑑𝐸
𝑑𝑥 =

1
4𝜋𝜖

𝑄!   ∆𝑥!
(∆𝑥!! + ∆𝑦!!)!/!

!

!!!

                        (19) 

𝐸! =
𝑑𝐸
𝑑𝑦 =

1
4𝜋𝜖

𝑄!   ∆𝑦!
(∆𝑥!! + ∆𝑦!!)!/!

!

!!!

                      (20) 

To see if this method is accurate, a point is chosen on the contour which does not have a contour 

point and checked to see how close its potential is to the potential defined in the problem. Given 

~140 charges along the contour, the error is less than 1%. Next, a separate method is needed to 

derive the electric fields in the two layers of skin due to the different permittivities and requires 

the use of two sets of fictitious charges. 

 To account for the effects of the layers of skin with different permittivities and their 

effect on the electric field, fictitious charges have to be used. Shen and Kong, in Applied 

Electromagnetism, describe a solution technique for this problem (402). Before applying the 

concept to the current simulation, it is necessary to look at one real charge in a medium with 

permittivity 𝜖! near a boundary to a separate permittivity 𝜖!. See figures below for the layout. 

 

 

 



	
   11	
  

 

 

 

 
 
 
 
Figure 4. (left) q and q’ are used to calculate the field in the medium characterized by 𝝐𝟏. (right) q’’ 
is used to calculate the field in the medium characterized by 𝝐𝟐. 
 
 
The potential can be calculated in the medium characterized by 𝜖! with the real charge, q, and q’ 

(which can be found by reflecting the position of the original charge over the boundary). The 

potential in the top layer is defined as: 

𝜑! 𝑥,𝑦 =
1

4𝜋𝜖!
𝑞

∆𝑥! + (𝑦 − 𝑑)!
+

𝑞′
∆𝑥! + (𝑦 + 𝑑)!

,              (21) 

where d is the vertical distance between the charge and the boundary. The potential in the second 

layer is given with q’’ which is in the same position of q, and is calculated with the following 

equation: 

𝜑! 𝑥,𝑦 =
1

4𝜋𝜖!
𝑞′′

∆𝑥! + (𝑦 − 𝑑)!
              (22) 

Two boundary conditions (1) and (2) have to be satisfied at the boundary, and the equations are 

shown below. 

𝜑! 𝑥, 0 = 𝜑! 𝑥, 0   →   
1

4𝜋𝜖!
𝑞

∆𝑥! + 𝑑!
+

𝑞′
∆𝑥! + 𝑑!

=
1

4𝜋𝜖!
𝑞′′

∆𝑥! + 𝑑!
            (23)           

𝜖!
𝜕𝜑!
𝜕𝑦 𝑦 = 0 = 𝜖!

𝜕𝜑!
𝜕𝑦 𝑦 = 0 → 

𝑞𝑑
(∆𝑥! + 𝑑!)!/! +

𝑞′𝑑
(∆𝑥! + 𝑑!)!/! =

𝑞′′𝑑
(∆𝑥! + 𝑑!)!/!             (24)           

𝜖!	
  
	
  
𝜖!	
  
	
  

q	
  

q’	
  

𝜖!	
  
	
  
𝜖!	
  
	
  

q'’	
  
y	
  

x	
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Solving for q’ and q’’ results in the following: 

𝑞! = 𝑞
𝜖! − 𝜖!
𝜖! + 𝜖!

          (25) 

𝑞!! = 𝑞
2𝜖!

𝜖! + 𝜖!
          (26)         

It is possible to extrapolate and apply these results to a model with n points. To do so, there will 

be n q’ and n q’’ charges, all of which abide by equations (25) and (26). This is possible because 

of the theory of superposition. Once all image charges are defined, it is then possible to calculate 

the electric field in the top layer and electric field in the bottom layer by finding the negative 

gradient of (21) and (22). The electric field in the top layer is then defined as the following: 

𝐸! =
1

4𝜋𝜖!
𝑞∆𝑥!

(∆𝑥!
! + ∆𝑦!!)!/!

+
𝑞′∆𝑥!

(∆𝑥!
! + ∆𝑦!!)!/!

!

!!!

          (27) 

Lastly, the electric field in the bottom layer is defined as the following: 

𝐸! =
1

4𝜋𝜖!
𝑞′′∆𝑦!

(∆𝑥!
! + ∆𝑦!!)!/!

!

!!!

          (28) 

 One output of this simulation is shown below. The parameters for this simulation are as 

follows: the contour is parabolic, 𝜖! > 𝜖!, and 𝑑! > 𝑑!. Note that the electric field lines in the 

top later begin to point outward as the boundary approaches, which is a consequence of 𝜖! > 𝜖!.  
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Figure 5. Electric field model for a parabolic contour. 

The MATLAB program is robust in the sense that any contour shape can be modeled given its 

mathematical function. Note that while only the electric field lines are shown, data for each point 

represented is contained in a master array, which can be accessed outside of the program. Also, 

the MATLAB script can receive a variety of parameters, such as the skin layer depths, 

permittivities, and vector and charge spacing. However, this simulation does not have the 

capabilities for the calculation of transient electric fields. Also, since it is only a two-dimensional 

model the electric field magnitudes will not be as accurate as a three-dimensional simulation. To 

accomplish a three-dimensional simulation, ring charges and elliptical integrals will have to be 

calculated. Although there are inaccuracies and some limits in the model, it simulations 

qualitative electric field behavior. 

Two-Dimensional Modeling (Conductivity) 

In order to understand how to calculate the transient electric fields in this system, a new 

numerical technique has to be described. The time evolving electric field occurs when the 

medium has conductivity, and charge will build up on the boundary between the two layers of 



	
   14	
  

skin. The new method is based on the theory of superposition. Its concept and theory will be 

discussed in this section; however the code will be omitted from the appendix. 

At the initial condition when t=0, as the voltage is applied to the electrode, there will be 

no charge build up and the electric field solution will be that of model with no conductivity. 

However, the solution at the next time step requires the calculation of the surface charge density 

on the boundary. 

The basic principle of charge accumulation on the boundary is discussed in the section of 

one-dimensional modeling, but the pertinent equations and boundary conditions will be covered 

briefly here. The charge can be approximated using Newton’s method and the base case, 

𝜌! 0 = 0, as shown in (29). 

𝜌! 𝑡!"#$ = 𝜌! 𝑡!"# +
𝑑𝜌!
𝑑𝑥   ∆𝑡   → 𝜌! 𝑡!"#$ = 𝜌! 𝑡!"# + 𝜎!𝐸!! − 𝜎!𝐸!!   ∆𝑡                      (29) 

Notice that the electric fields are the perpendicular components because the currents passing into 

and out of the boundary are of interest.  

 Once the surface charge is calculated, the electrode is grounded and the electric field due 

solely to the charges on the boundary is calculated.  Image charges were included to account for 

the grounded electrode. After the field due to the surface charges was calculated, it was added to 

the original field (initial solution). This is then the electric field solution after a time step of ∆𝑡, 

and this is possible because of superposition. The process of obtaining the surface charges and 

new fields is then repeated until the time surpasses several time constants and reaches its steady 

state. 

 Below is an example of the simulation with the following parameters: the contour 

contains two half circles (left with positive voltage and right with negative voltage), 𝜖! < 𝜖!, 
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𝜎! < 𝜎!, and 𝑑! > 𝑑!. The time after the voltage is applied is given in the title. The simulation 

ran after several iterations, and two outputs are shown. 

 

Figure 6. Time evolution of electric field. (left) The initial condition. (right) Output after several 

iterations. 

It is also of great interest to see the distribution of surface charge density along the boundary. 

The plot is shown below after one iteration of the model: 

 

Figure 7. Surface charge density along boundary after second iteration. 

It is possible to see that positive charges begin to accumulate where the positive half circle is and 

negative charges begin to accumulate where the negative half circle is. This model was not tested 
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for accuracy, but will be soon verified. One major inaccuracy with this model is the fact that it is 

only two-dimensional, but a fourth model will be developed to account for this.  

 

Conclusions: 

 Electroporation has been studied intensively, however, there has been very little progress 

with understanding what actually causes this biological phenomenon. As predicted by the 

doctoral student, Cassandra Browning, electroporation may occur where the field is strongest and 

where there is a large horizontal component to the field. Based on this criterion, a design was 

developed making use of inter-digitated electrodes with opposite polarities. The opposite 

polarities, as shown in Figure 6, will form strong, horizontal electric fields. The field is strongest 

between the two nodes, and it is believed that there will be a high probability that electroporation 

will occur at that location. This is where nanoparticles with medicinal properties can be injected 

according to the theory.  

 The main reason why MATLAB was used to model this system was because of its 

customizability and its ability to expand. The first step forward will be to verify the transient 

two-dimensional electric field model in terms of behavior and units. Future models, as 

mentioned above will include three dimensional electrode shapes. Also, three layers will be 

modeled so that the electric fields can be calculated at the deeper levels of the skin. An optimal 

electrode design will be produced that incorporates the entire criterion necessary for 

electroporation. 

Nanoparticle injection via electroporation has the potential of being a popular 

transdermal drug delivery method of the future. Many benefits include lessening the risk for 

infection, rapid bodily activation of the medicine, and rapid delivery. This method may play a 
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significant role on the battlefield to fighting full-scale epidemics in record times. It is with 

electromagnetic theory combined with biological understanding that could revolutionize 

medicinal delivery in the near future. 
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Appendix 

Below is all of the code used for the MATLAB simulation software. 

One-Dimensional Model 

electricfield_onedimension.m 

function electricfield_onedimension 
%This function calculates and plots the transient electric field and 
%charges on the boundaries between the skin. To use the program, enter the 
%information in the fields and press plot. 
  
close all 
  
%These are the initial values and constants. 
E1=[]; 
E2=[]; 
E3=[]; 
ps1=[0]; 
ps2=[0]; 
  
e0= 8.85418782*10^-12; 
v=100; 
  
%This formats the figure window. 
  
fig = figure('Position',[130 640 1200 600],... 
    'Name','One Dimensional Electrode',... 
    'Menubar','none',... 
    'Color',get(0,'DefaultUIControlBackgroundColor')); 
  
%This adds a title to the figure window. 
uicontrol(gcf,'Style','text', ... 
    'String','One Dimensional Electrode',... 
    'fontsize',15, ... 
    'Position',[460,270,320,30],... 
    'BackgroundColor',[.5 .5 0.5]); 
  
%This moves the figure to the center of the window. 
movegui(fig, 'center') 
set(fig, 'visible', 'on') 
  
%The code below is for the Graphical User Interface. eg. This allows you to 
%type values in for the dielectric constant (en/e0), conductivity (sn), and 
%thickness of the layer (dn). 
  
%===================Layer 1=============================== 
  
%====================e1/e0================================ 
  
s1han = uicontrol('Style', 'edit', 'Position', ... 
    [475, 165, 40, 30], 'String', 1,... 
    'Callback', @gete1); 
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hsttext=uicontrol('Style', 'text', ... 
    'Position', [465, 195, 70, 20], 'String', 'e1/e0= ','Visible', 'on'); 
  
    function gete1(source,eventdata) 
        a1=get(s1han, 'String'); 
        a2=str2num(a1); 
        set(hsttext, 'Visible', 'on', 'String', ['e1/e0= ' num2str(a1)]) 
    end 
  
%====================s1================================ 
  
s2han = uicontrol('Style', 'edit', 'Position', ... 
    [575, 165, 60, 30],'String', 1/100,... 
    'Callback', @gets1); 
  
hsttext2=uicontrol('Style', 'text', ... 
    'Position', [530, 195, 150, 20], 'String', 's1 (Mhos)= ','Visible', 
'on'); 
  
    function gets1(source,eventdata) 
        b1=get(s2han, 'String'); 
        b1=str2num(b1); 
        set(hsttext2, 'Visible', 'on', 'String', ['s1 (Mhos)= ' num2str(b1)]) 
    end 
  
%====================d1================================ 
  
s3han = uicontrol('Style', 'edit', 'Position', ... 
    [695, 165, 40, 30],'String', 10,... 
    'Callback', @getd1); 
  
hsttext3=uicontrol('Style', 'text', ... 
    'Position', [670, 195, 90, 20], 'String', 'd1 (um)= ','Visible', 'on'); 
  
    function getd1(source,eventdata) 
        c1=get(s3han, 'String'); 
        c1=str2num(c1); 
        set(hsttext3, 'Visible', 'on', 'String', ['d1 (um)= ' num2str(c1)]) 
    end 
  
%===================Layer 2=============================== 
  
%====================e2/e0================================ 
  
s4han = uicontrol('Style', 'edit', 'Position', ... 
    [475, 105, 40, 30],'String', 3,... 
    'Callback', @gete2); 
  
hsttext4=uicontrol('Style', 'text', ... 
    'Position', [465, 135, 70, 20], 'String', 'e2/e0= ','Visible', 'on'); 
  
    function gete2(source,eventdata) 
        a2=get(s4han, 'String'); 
        a2=str2num(a2); 
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        set(hsttext4, 'Visible', 'on', 'String', ['e2/e0= ' num2str(a2)]) 
    end 
  
%====================s2================================ 
  
s5han = uicontrol('Style', 'edit', 'Position', ... 
    [575, 105, 60, 30],'String', 1/100,... 
    'Callback', @gets2); 
  
hsttext5=uicontrol('Style', 'text', ... 
    'Position', [530, 135, 150, 20], 'String', 's2 (Mhos)= ','Visible', 
'on'); 
  
    function gets2(source,eventdata) 
        b2=get(s5han, 'String'); 
        b2=str2num(b2); 
        set(hsttext5, 'Visible', 'on', 'String', ['s2 (Mhos)= ' num2str(b2)]) 
    end 
  
%====================d2================================ 
  
s6han = uicontrol('Style', 'edit', 'Position', ... 
    [695, 105, 40, 30],'String', 20,... 
    'Callback', @getd2); 
  
hsttext6=uicontrol('Style', 'text', ... 
    'Position', [670, 135, 90, 20], 'String', 'd2 (um)= ','Visible', 'on'); 
  
    function getd2(source,eventdata) 
        c2=get(s6han, 'String'); 
        c2=str2num(c2); 
        set(hsttext6, 'Visible', 'on', 'String', ['d2 (um)= ' num2str(c2)]) 
    end 
  
%===================Layer 3=============================== 
  
%====================e3/e0================================ 
  
s7han = uicontrol('Style', 'edit', 'Position', ... 
    [475, 45, 40, 30],'String', 5,... 
    'Callback', @gete3); 
  
hsttext7=uicontrol('Style', 'text', ... 
    'Position', [465, 75, 70, 20], 'String', 'e3/e0= ','Visible', 'on'); 
  
    function gete3(source,eventdata) 
        a3=get(s7han, 'String'); 
        a3=str2num(a3); 
        set(hsttext7, 'Visible', 'on', 'String', ['e3/e0= ' num2str(a3)]) 
    end 
  
%====================s3================================ 
  
s8han = uicontrol('Style', 'edit', 'Position', ... 
    [575, 45, 60, 30],'String', 1/100,... 
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    'Callback', @gets3); 
  
hsttext8=uicontrol('Style', 'text', ... 
    'Position', [530, 75, 150, 20], 'String', 's3 (Mhos)= ','Visible', 'on'); 
  
    function gets3(source,eventdata) 
        b3=get(s8han, 'String'); 
        b3=str2num(b3); 
        set(hsttext8, 'Visible', 'on', 'String', ['s3 (Mhos)= ' num2str(b3)]) 
    end 
  
%====================d3================================ 
  
s9han = uicontrol('Style', 'edit', 'Position', ... 
    [695, 45, 40, 30],'String', 50,... 
    'Callback', @getd3); 
  
hsttext9=uicontrol('Style', 'text', ... 
    'Position', [670, 75, 90, 20], 'String', 'd3 (um)= ','Visible', 'on'); 
  
    function getd3(source,eventdata) 
        c3=get(s9han, 'String'); 
        c3=str2num(c3); 
        set(hsttext9, 'Visible', 'on', 'String', ['d3 (um)= ' num2str(c3)]) 
    end 
%==================Calculate Button==================== 
  
uicontrol(gcf,'Style','Pushbutton', ... 
    'String','Plot',... 
    'Position',[580,235,70,20],... 
    'BackgroundColor',[0.8,0.8,0.8], ... 
    'CallBack',@plotdata); 
  
  
    function plotdata (source, eventdata) 
         
       %This gets the coefficients from the text fields. cn is distance, bn 
       %is conductivity, and an is dielectric constant. 
        c3=get(s9han, 'String'); 
        c3=str2num(c3); 
        b3=get(s8han, 'String'); 
        b3=str2num(b3); 
        a3=get(s7han, 'String'); 
        a3=str2num(a3); 
         
        c2=get(s6han, 'String'); 
        c2=str2num(c2); 
        b2=get(s5han, 'String'); 
        b2=str2num(b2); 
        a2=get(s4han, 'String'); 
        a2=str2num(a2); 
         
        c1=get(s3han, 'String'); 
        c1=str2num(c1); 
        b1=get(s2han, 'String'); 
        b1=str2num(b1); 
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        a1=get(s1han, 'String'); 
        a1=str2num(a1); 
         
         
        %Permitivities/conductivities/thickness of layer 1 
        e1=a1*e0; 
        s1=b1; 
        d1=c1*10^-6; 
         
        %Permitivities/conductivities/thickness of layer 2 
        e2=a2*e0; 
        s2=b2; 
        d2=c2*10^-6; 
         
        %Permitivities/conductivities/thickness of layer 3 
        e3=a3*e0; 
        s3=b3; 
        d3=c3*10^-6; 
         
         
         
        %Determine the smallest e/s ratio: 
         
        tc1=e1/s1; 
        tc2=e2/s2; 
        tc3=e3/s3; 
         
        %This is the smallest time constant divided by 100 
        tcsmall=min([tc1 tc2 tc3])/100; 
        tclarge=max([tc1 tc2 tc3]); 
         
        %Set up a time vector 
        timevect=0:tcsmall:tclarge*3; 
         
         
       %Write a loop that calculates the E field and charge densities over  
       %time.   
       length(timevect) 
        for i=1:1:length(timevect)-1 
             
            %Linear algebra, to solve 3 eqs, 3 unknowns 
            emat=[[d1 d2 d3]; [-e1 e2 0]; [0 -e2 e3];]; 
            equal=[v; ps1(i); ps2(i);]; 
            ematinv=inv(emat); 
            ematsol=ematinv*equal; 
             
            %Assign values for electric field. 
            E1(i)=ematsol(1); 
            E2(i)=ematsol(2); 
            E3(i)=ematsol(3); 
             
            %determine the rate of charge being accumulated on the 
            %boaundaries. 
            dps1dt=s1*E1(i)-s2*E2(i); 
            dps2dt=s2*E2(i)-s3*E3(i); 
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            %Use Euler's method to get a new value for the charge density 
            %on the boundary. 
            ps1(i+1)=ps1(i)+dps1dt*tcsmall; 
            ps2(i+1)=ps2(i)+dps2dt*tcsmall; 
             
        end 
     
        %The code below plots the data that accumulated in the loop above. 
        subplot(2,3,1); 
         
        p1=plot(timevect(1:end-1), E1); 
         
        xlabel('Time (s)') 
        ylabel('Field Strength (V/m)') 
        title('E1 Magnitude vs. Time') 
        set(p1,'Color','red','LineWidth',2) 
         
        subplot(2,3,2); 
        p2=plot(timevect(1:end-1), E2); 
         
        xlabel('Time (s)') 
        ylabel('Field Strength (V/m)') 
        title('E2 Magnitude vs. Time') 
        set(p2,'Color','red','LineWidth',2) 
         
        subplot(2,3,3); 
        p3=plot(timevect(1:end-1), E3); 
         
        xlabel('Time (s)') 
        ylabel('Field Strength (V/m)') 
        title('E3 Magnitude vs. Time') 
        set(p3,'Color','red','LineWidth',2) 
         
        subplot(2,3,4); 
        p4=plot(timevect,ps1); 
         
        xlabel('Time (s)') 
        ylabel('Charge Density (C/m^3)') 
        title('Charge Density 1 vs. Time') 
        set(p4,'Color','red','LineWidth',2) 
         
        subplot(2,3,6); 
        p5=plot(timevect,ps2); 
         
        xlabel('Time (s)') 
        ylabel('Charge Density (C/m^3)') 
        title('Charge Density 2 vs. Time') 
        set(p5,'Color','red','LineWidth',2) 
         
        %Analytical Solution 
        
        tau=(d2*e1+d1*e2)/(d2*s1+d1*s2); 
        ea1=ones(timevect); 
        ea2=ones(timevect); 
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        charge=ones(timevect); 
        for i=1:length(timevect) 
            
            ea1(i)=s2*v/(d2*s1+d1*s2)*(1-exp(-
timevect(i)/tau))+e2*v/(d2*e1+d1*e2)*exp(-timevect(i)/tau); 
            ea2(i)=v/d2-d1/d2*ea1(i); 
            charge(i)=-e1*ea1(i)+e2*ea2(i); 
             
        end 
         
        fig=figure; 
         
        subplot(1,3,1) 
        p2=plot(timevect,ea1); 
        xlabel('Time (s)') 
        ylabel('Field Strength (V/m)') 
        title('E1 Magnitude vs. Time (Analytic)') 
        set(p2,'Color','red','LineWidth',2) 
         
        subplot(1,3,2) 
        p2=plot(timevect,ea2); 
        xlabel('Time (s)') 
        ylabel('Field Strength (V/m)') 
        title('E2 Magnitude vs. Time (Analytic)') 
        set(p2,'Color','red','LineWidth',2) 
         
        subplot(1,3,3) 
        p2=plot(timevect,charge); 
        xlabel('Time (s)') 
        ylabel('Charge Density (C/m^3)') 
        title('Charge Density 1 vs. Time (Analytic)') 
        set(p2,'Color','red','LineWidth',2) 
         
         
    end 
  
end 
  

 Two-Dimensional Model (No Conductivity) 

EField_NonUniform_units.m 

 
%Unlike the first model, this one is a script and not a function. THIS IS  
%THE MAIN SCRIPT. Using the charge stimulation method, this model shows the  
%field based on the eletrode configuration. The electric field is stored in 
%the matrix eMat. 
  
  
%These are the constants. Width is the width of the electrode, radius is 
%the parameter substituted into the mathFunc (see mathFunc), spacing is the 
%spacing of the contour points, efield spacing is the spacing of the 
%E-field vectors. d1, d2, and d3 are the layers of the skin. Each of these 
%parameters can be changed and the program will still function. 
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%========================================================================= 
width=50; 
%The radius is used with the contour, and usually adjusted based on 
%aesthetics and/or criterion. 
radius=8; 
  
%Choose this radius when using the sin function in mathFunc 
spacing=.5; 
efieldspacing=2; 
voltage=10; 
displacement=1; 
  
e0=8.85418782*10^-12/10^6; 
e1=5*e0; 
e2=e0; 
s1=0.1; 
s2=0.1; 
k=1/(4*pi*e0); 
  
d1=15; 
d2=30; 
%========================================================================= 
  
%This makes the contour and charge points. 
%matPoints(1,:) are the x points of the contours. 
%matPoints(2,:) are the y points of the contours. 
%matPoints(3,:) are the x points of the charges. 
%matPoints(4,:) are the y points of the charges. 
matPoints=makePoints(width,spacing,displacement,radius); 
  
  
%This plots the contour and charge points. 
clf 
hold on 
plot(matPoints(1,:),matPoints(2,:), 'xk') 
plot(matPoints(3,:), matPoints(4,:), 'or') 
axis equal 
axis off 
  
  
%This pre-allocates the matrix of potential coefficients (pMat, k/r). 
%vCol is the column used for the know potential on the surface of the 
%electrode. 
len=length(matPoints); 
pMat=zeros(len,len); 
vCol1=ones(len/2,1)*voltage; 
vCol2=ones(len/2+1,1)*-voltage; 
vCol=[vCol1; vCol2]; 
vCol=ones(len,1)*voltage; 
  
%This calculates the radius of each contour point to each charge point. 
%Each row is for one contour point and the potential coefficient is 
%calculated for that contour point in relation to each test charge point. 
for i=1:len 
    for j=1:len 
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        pMat(i,j)=k/(radiusFunc(matPoints(1,i), matPoints(2,i), 
matPoints(3,j), matPoints(4,j))); 
    end 
end 
  
%This calculates the charge of each test charge point. (CSM) 
qCol=pMat\vCol; 
  
%This tests to see if the potential at a contour point adds up to the total 
%potential. 
contourPointNum=1; 
vtot=0; 
for i=contourPointNum 
    for j=1:len 
        vtot=vtot+pMat(i,j)*qCol(j); 
    end 
end 
  
%This preallocates the vector for the image charges 
qPrimeCol=ones(len,1); 
qDoublePrimeCol=ones(len,1); 
  
  
%Create the image charges. This is a perfect reflection of the charges over 
the 
%ground plane, and the charges are negated. 
%matPoints(5,:) are the x values for the image charges. 
%matPoints(6,:) are the y values for the image charges. 
for i=1:len 
    matPoints(5,i)=matPoints(3,i); 
    matPoints(6,i)=matPoints(4,i)-2*abs(-(d1)-matPoints(4,i)); 
    qCol(i,2)=-qCol(i,1); 
    qPrimeCol(i,1)=qCol(i)*(e1-e2)/(e1+e2); 
    qDoublePrimeCol(i,1)=qCol(i)*(2*e2/(e1+e2)); 
     
end 
  
  
%Plots the boundaries of the skin. 
plot([-width/2 width/2], [-d1 -d1],'-k') 
plot([-width/2 width/2], [-d1-d2 -d1-d2], '-k') 
  
  
%Make the electric field array. 
%This is the preallocated matrix of electric field vectors. 
eMat=zeros(round((d1+d2)/efieldspacing+1), round(width/efieldspacing+1), 6); 
  
%These are the corresponding values for each element in the array. 
%Basically, what I did was made a three dimensional array with 
%corresponding values. 
%eMat(:,:,1) are the x values for the efield points. 
%eMat(:,:,2) are the y values for the efield points. 
%eMat(:,:,3) are the x vectors for the efield. 
%eMat(:,:,4) are the y vectors for the efield. 
%eMat(:,:,5) are the scaled x vectors for the efield. 
%eMat(:,:,6) are the scaled y vectors for the efield. 
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matCol=-width/2:efieldspacing:width/2; 
matRow=-.1:-efieldspacing:(-(d1+d2)); 
maxField1=0; 
maxField2=0; 
  
%col, x 
for i=1:length(matCol) 
   %row, y 
        for j=1:length(matRow) 
         
            %make the x and y values of the grid correspond to the index of 
            %the array. 
            eMat(j,i,1)=matCol(i); 
            eMat(j,i,2)=matRow(j); 
             
            %This conditional is used so that no electric field points are 
            %ploted above the electrode surface. 
            if eMat(j,i,2)<mathFunc(eMat(j,i,1),radius) 
                 
                %This calculates the electric field based on the charges 
                %calculated through CSM using both the charges above the 
                %boundary and the images charges. 
                if eMat(j,i,2)>=-d1 
                [Ex Ey]=eFieldPoints(eMat(j,i,1),eMat(j,i,2),matPoints,qCol, 
qPrimeCol, qDoublePrimeCol, e1, e2, 1); 
                eMat(j,i,3)=Ex; 
                eMat(j,i,4)=Ey; 
                else 
                [Ex Ey]=eFieldPoints(eMat(j,i,1),eMat(j,i,2),matPoints,qCol, 
qPrimeCol, qDoublePrimeCol, e1, e2, 2); 
                eMat(j,i,3)=Ex; 
                eMat(j,i,4)=Ey; 
                end 
             
                %This finds the max field strength of the electric field. 
                %This is not currently used in the model, but was when the 
                %vectors in the vector field were of relative length. 
                if eMat(j,i,2)>=-d1 
                   if 
(sqrt(max(max(eMat(j,i,3)))^2+max(max(eMat(j,i,4)))^2)>maxField1) 
                   
maxField1=sqrt(max(max(eMat(j,i,3)))^2+max(max(eMat(j,i,4)))^2); 
                   end 
                    
                else 
                   if 
(sqrt(max(max(eMat(j,i,3)))^2+max(max(eMat(j,i,4)))^2)>maxField2) 
                   
maxField2=sqrt(max(max(eMat(j,i,3)))^2+max(max(eMat(j,i,4)))^2);   
                   end 
                end 
             
             
            end 
             
        end 
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end 
  
  
  
%This loop plots the scaled vectors on the figure window for the electric 
%field. 
  
%col, x 
for i=1:length(matCol) 
   %row, y 
  
        for j=1:length(matRow) 
  
            if eMat(j,i,2)<mathFunc(eMat(j,i,1),radius) 
                 
            [xn yn]=unitVec(eMat(j,i,3),eMat(j,i,4)); 
             
            %This conditional is used for scaling and creating normalized 
vectors. 
            %There are different if statements if the vectors had relative 
sizes. 
            if eMat(j,i,2)>=-d1 
                if (sqrt(eMat(j,i,3)^2+eMat(j,i,4)^2)<maxField1*0.08) 
                   
%scaleCoeff=(sqrt(eMat(j,i,3)^2+eMat(j,i,4)^2)/(maxField1*.08)); 
                   scaleCoeff=3.5; 
                   eMat(j,i,5)=eMat(j,i,1)+scaleCoeff*xn/3; 
                   eMat(j,i,6)=eMat(j,i,2)+scaleCoeff*yn/3; 
                else  
                   scaleCoeff=3.5; 
                   eMat(j,i,5)=eMat(j,i,1)+scaleCoeff*xn/3; 
                   eMat(j,i,6)=eMat(j,i,2)+scaleCoeff*yn/3; 
                end 
                 
            else 
                 
                if (sqrt(eMat(j,i,3)^2+eMat(j,i,4)^2)<maxField2) 
                   
%scaleCoeff=(sqrt(eMat(j,i,3)^2+eMat(j,i,4)^2)/(maxField2)); 
                   scaleCoeff=3.5; 
                   eMat(j,i,5)=eMat(j,i,1)+scaleCoeff*xn/3; 
                   eMat(j,i,6)=eMat(j,i,2)+scaleCoeff*yn/3; 
                 else  
                    scaleCoeff=3.5; 
                    eMat(j,i,5)=eMat(j,i,1)+scaleCoeff*xn/3; 
                    eMat(j,i,6)=eMat(j,i,2)+scaleCoeff*yn/3; 
                 end 
                
            end 
            %this actually plots the lines and an o at the tip. 
            line([eMat(j,i,1) eMat(j,i,5)],[eMat(j,i,2) eMat(j,i,6)]); 
            plot(eMat(j,i,5),eMat(j,i,6),'o') 
            end 
             
        end 
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end 

eFieldPoints.m 
 

%This calculates the electric field for a given point. 
  
  
 function [Ex Ey]=eFieldPoints(x2,y2,matPoints,qCharge, qPrime, qPrimePrime, 
e1, e2, region) 
  
k1=1/(4*pi*e1); 
k2=1/(4*pi*e2); 
len=length(qCharge); 
Ex=0; 
Ey=0; 
%scale factor for V/cm Electric Field 
sf2=10^4; 
  
for i=1:len 
    x1=matPoints(3,i);  %xPoints of original charges and q'' 
    y1=matPoints(4,i);  %yPoints of original charges and q'' 
    x1p=matPoints(5,i); %xPoints of q' 
    y1p=matPoints(6,i); %yPoints of q' 
    q=qCharge(i,1); 
    qp=qPrime(i,1); 
    qpp=qPrimePrime(i,1); 
     
    %E-field=lastE-Field+ Efield due to the test charges + Efield due to 
    %the image charges for the different permittivities. 
    if region==1 
    Ex=Ex+k1*q*(x2-x1)/((x2-x1)^2+(y2-y1)^2)^(3/2)+k1*qp*(x2-x1p)/((x2-
x1p)^2+(y2-y1p)^2)^(3/2); 
    Ey=Ey+k1*q*(y2-y1)/((x2-x1)^2+(y2-y1)^2)^(3/2)+k1*qp*(y2-y1p)/((y2-
y1p)^2+(y2-y1p)^2)^(3/2); 
    else 
    Ex=Ex+k2*qpp*(x2-x1)/((x2-x1)^2+(y2-y1)^2)^(3/2); 
    Ey=Ey+k2*qpp*(y2-y1)/((x2-x1)^2+(y2-y1)^2)^(3/2); 
    end 
end 
  
  
end 
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makePoints.m 
 

%This function produces the contour and charge points. 
function array=makePoints(width,spacing,dif,rad) 
  
%These are the intial values 
%x(1,2) 
array(1,1:2)=-width/2; 
%y(1,2) 
array(2,1:2)=0; 
  
%x(1,2) 
array(3,1:2)=-width/2; 
%y(1,2) 
array(4,1:2)=dif; 
  
%Hardcode a formula. 
i=2; 
for n=-width/2:.001:width/2 
    %This conditional checks to see if the function in mathFunc produces a 
    %value less than zero; if so, use that value instead of 0 for the y 
    %value. This also calculates the charge points based on the slope of 
    %the current point and the previous point. 
    if (real(mathFunc(n,rad))<0 && radiusFunc(array(1,i-1), array(2, i-1), n, 
mathFunc(n,rad))>=spacing) 
        array(1,i)=n; 
        array(2,i)=mathFunc(n,rad); 
        [array(3,i-1) array(4,i-1)]=chargePoints(array(1,i-1), array(2, i-1), 
array(1,i), array(2, i), dif); 
        i=i+1; 
         
    elseif (real(mathFunc(n,rad))>=0 && radiusFunc(array(1,i-1), array(2, i-
1), n, 0)>=spacing) 
        array(1,i)=n; 
        array(2,i)=0; 
        [array(3,i-1) array(4,i-1)]=chargePoints(array(1,i-1), array(2, i-1), 
array(1,i), array(2, i), dif); 
        i=i+1; 
    end 
end 
  
%This makes a charge point for the last contour point. 
array(3,end)=array(3,end-1)+spacing; 
array(4,end)=dif; 
  
end 
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chargePoints.m 
 

%This calculates the slope, and then creates a point that is perpendicular 
%to the slope and offset from the first point by a distance of diff. 
  
function [xnew ynew]=chargePoints(x1,y1,x2,y2,diff) 
  
m=(y2-y1)/(x2-x1); 
if m>0 
    xnew=(x1)-diff/sqrt(1+1/m^2); 
else 
    xnew=(x1)+diff/sqrt(1+1/m^2); 
end 
ynew=(y1)+diff/sqrt(m^2+1); 
  
end 

mathFunc.m 
 

%Enter any function using the arguments as parameters. The rad parameter is 
%used to chage the graph for the boundary and contour points. 
function val=mathFunc(arg, rad) 
  
%this is a function for a round electrode shape. 
%val=-sqrt(rad^2-arg^2); 
val=-real(sqrt(rad^2-(arg-12)^2))-real(sqrt(rad^2-(arg+12)^2)); 
  
%This is a function for a parabolic electrode shape. 
%val=(1/rad)*arg^2-8; 
  
%This is a value for a sinusoidal electrode shape. 
%val=10*sin(arg*(1/rad)-pi+1.4); 
  
end 

mathFunc.m 
 

%This calculates the distance between two points. 
function radius=radiusFunc(x1, y1, x2, y2) 
  
radius=abs(sqrt((x1-x2)^2+(y1-y2)^2)); 
  
end 

untiVec.m 
 

%This calculates a unit vector. 
function [xn yn]= unitVec(x,y) 
  
xn=x/sqrt(x^2+y^2); 
yn=y/sqrt(x^2+y^2); 
  
end 
 
 


